
Introduction to Java English name: ____________________

Assignment: Binary Strings and class Binary (part 1) ©2025 Chris Nielsen – www.nielsenedu.com

For this coding project, we will write a Java class that will manipulate binary numbers. Each number is to be stored
in a Java String, and represented as a string of characters, each character being either a “0” or a “1”. For
example, we might declare a String variable and initialize it to a string that represents a binary number like this:

String twentyOne = "10101";

Write all methods in a single class named Binary, and write code to test those methods in a separate class (or
classes). Keeping the code for a particular task together, and separated from other code, is called encapsulation. It’s
an important vocabulary word for this course. In this case, we’ll be encapsulating the code related to manipulating
binary strings in a class named Binary. Below is a UML Class Diagram of the classes you are to code for this
assignment. You may name your test class whatever you please.

1. For the first part of the project, you will first use the Java String class methods to implement the methods:
shiftLeft, shiftRightLogical, and shiftRightArithmetic.

a) repeatChar

Before we write these methods, we’re going to write a “helper” method. A helper method is a method, which
is usually private, that we can call to perform some task that will make coding our public methods
easier. Methods that are private cannot be called from a different class.

The helper method we will write is to be named repeatChar, and it is to takes two parameters: a character
(type char), and an integer that gives the number of times to repeat that character. It is to return a String
that contains the character repeated the correct number of times. From the information already given you
should be able to deduce the method header, but it is given here to make sure you get it correct:

private static String repeatChar(char c, int times)

If, for example, we call the method with “repeatChar('a', 5)”, the value returned should be equal to
“aaaaa”.

To implement this, you will need to first declare an array of the appropriate size. Recall
that we can instantiate an empty array of characters with enough space to store four
characters with “new char[4]”. This is shown diagrammatically immediately to the
right of this text. The shading suggests the content has not been initialized.

To declare a variable named arr that contains a reference to an instantiation
of an empty array of characters with enough space to store four characters,
we use the statement: “char[] arr = new char[4];” This is shown
diagrammatically immediately to the right of this text.

Once you have declared the empty array of characters, write a for loop
to initialize each element of the array to the character given by the char
parameter c. The final result is shown diagrammatically immediately to
the right of this text.

We have constructed an array of characters with the desired values. To convert this array of characters to a
String, use: “new String(arr)”. Finally, return this result.

Page 1 of 5

-repeatChar(c: char, times: integer) : string
+shiftLeft(b: string, times: integer) : string
+shiftLeft(b: string) : string
+shiftRightLogical(b: string, times: integer) : string
+shiftRightLogical(b: string) : string
+shiftRightLogical(b: string, times: integer) : string
+shiftRightLogical(b: string) : string

<<static>> methods

Binary

+main(args: string[])
<<static>> methods

TestBinary

0 1 2 3arr

0 1 2 3

0 1 2 3arr

Introduction to Java English name: ____________________

Assignment: Binary Strings and class Binary (part 1) ©2025 Chris Nielsen – www.nielsenedu.com

To test this code, you can either temporarily make the method public and write some test code to test it
from a different class, or you can create a public tester method within the Binary class, perhaps named
testRepeatChar, write some code in it to test repeatChar, and call the tester method from another
class. The Binary class should not contain a main method.

Guard Statements

Guards watch an area, protecting the objects inside the boundaries of a building
or country. They ensure the safety of important things, such as people, buildings,
treasure, or data.

In computer programming, a guard statement works in a similar way. It's a rule
that checks whether something is true before allowing a program to do
something. A guard decides if a particular person can enter based on the
conditions; the guard statement decides if the program should enter a block of
code to run it based on a condition. If the condition of the guard statement is true,
the program continues; if it's false, it is prevented from continuing.

As an example, the following partial method code contains a guard statement to ensure the parameter named
s is not equal to null. If the value of s is null, the guard statement prevents the program from executing
the method by exiting the method, returning a value of false. If s is not null, the program continues to
execute the remaining code inside the method.

public static boolean setValue(String s) {

 // Guard statement:
 if(s == null) {
 return false;
 }

 // Remainder of method body not shown
}

b) repeatChar – error checking

In your test code for repeatChar, did you include a test to check what would happen if you called
repeatChar and requested a negative number of characters? If you did not explicitly add a check to see if
the method were called with a negative value for times, your method will likely crash with an exception
called NegativeArraySizeException when the code tries to declare an array with a negative size. To
fix this, add a guard statement that returns an empty string ("") if a negative value is passed in the
parameter times. Actually, you can make the condition to include both negative values or zero, since the
loop will return an empty string if a value of zero is passed – by returning an empty string when times is
equal to 0, we make the code ever so slightly more efficient.

Test your code to ensure it will return an empty string (and not crash) if a negative value is passed in the
parameter named times.

Page 2 of 5

Introduction to Java English name: ____________________

Assignment: Binary Strings and class Binary (part 1) ©2025 Chris Nielsen – www.nielsenedu.com

c) shiftLeft

Recall that when shifting a binary number left, the procedure is the same for both unsigned and signed
numbers, thus the same for both logical and arithmetic shift. We will thus just implement a single
shiftLeft method. For completeness, you could also create a shiftLeftLogical and
shiftLeftArithmetic, and have those methods simply call the shiftLeft method. (You should
generally not duplicated code when possible.)

Actually, there is to be two shiftLeft methods (overloaded methods). The first method is to take two
parameters: a String parameter that contains a binary string to shift, and an integer parameter that is to
contain the number of bit positions to shift the binary string. The method is to return the shifted binary string.
The second method takes only a single parameter: a String parameter that contains the binary string to
shift. This second method is to shift the binary string by one bit position. There is no reason to duplicate code
– the second method can simply call the first method and specify the number of bit positions to shift to be 1.

The body of the shiftLeft method must use the String class method substring to appropriately cut
the String containing the binary number, simulating those bits shifted out of the number, and use the
helper method repeatChar that you wrote in part (a) to generate a string of “0” characters to fill the
spaces where the numbers were shifted out. This algorithm is shown diagrammatically below using the
example of the binary string “10101” is shifted left by 3 bit positions. As can be seen in the diagram, the
correct binary string is created when the result of repeatChar is concatenated to the end of the result of
substring.

Example Test Code for shiftLeft

String original = "10101";
String shifted = Binary.shiftLeft(original, 3);

System.out.println(original + " shifted left by 3 is " + shifted);

Output of Example Test Code for shiftLeft

10101 shifted left by 3 is 01000

Page 3 of 5

Introduction to Java English name: ____________________

Assignment: Binary Strings and class Binary (part 1) ©2025 Chris Nielsen – www.nielsenedu.com

d) shiftRightLogical

When performing a logical shift right, for each bit position shifted, the value shifted in on the left side is 0.
The code for this method will be very similar to that for shiftLeft, except the correct binary string is
created when the result of substring is concatenated to the end of the result of the call to method
repeatChar.

Example Test Code for shiftRightLogical

String original = "10101";
String shifted = Binary.shiftRightLogical(original, 3);

System.out.print(original + " logically shifted right by 3 is ");
System.out.println(shifted);

Output of Example Test Code for shiftRightLogical

10101 logically shifted right by 3 is 00010

e) shiftRightArithmetic

When performing an arithmetic shift right, for each bit position shifted, the value shifted in on the left side is
equal to the sign bit (which is the most significant bit, or left-most bit). The code for this method will be very
similar to that for shiftLeftLogical, except we need to determine the correct value, 0 or 1, to pass to
repeatChar. As with shiftLeftLogical, the correct binary string is created when the result of
substring is concatenated to the end of the result of the call to method repeatChar.

The two diagrams below show arithmetic shifting 3 bit positions when the most significant bit is 0 (the result
is the same as logical shifting 3 bit positions) and arithmetic shifting 3 bit positions when the most
significant bit is 1.

Arithmetic shift by 3 bit positions
when the MSB is 0

Arithmetic shift by 3 bit positions
when the MSB is 1

Page 4 of 5

Introduction to Java English name: ____________________

Assignment: Binary Strings and class Binary (part 1) ©2025 Chris Nielsen – www.nielsenedu.com

Example Test Code for shiftRightArithmetic

String original = "10101";
String shifted = BinaryString.shiftRightArithmetic(original, 3);

System.out.print(original);
System.out.print(" arithmetically shifted right by 3 is ");
System.out.println(shifted);

original = "01010";
shifted = BinaryString.shiftRightArithmetic(original, 3);

System.out.print(original);
System.out.print(" arithmetically shifted right by 3 is ");
System.out.println(shifted);

Output of Example Test Code for shiftRightArithmetic

10101 arithmetically shifted right by 3 is 11110
01010 arithmetically shifted right by 3 is 00001

f) You were asked to add a guard statement for repeatChar so that the program would not crash if the
method were passed a negative number. If you did not already add a guard statement on your shift methods,
consider whether they should have them or not, and if you were to add a guard statement, what value would
you return if the user of the Binary class asked to shift by a negative number. Below I give you a few
options, and it is up to you to define how your Binary class will react.

• Write a guard statement to return the value null, which means no String is returned. The
user who called the shift method can check the return value, and they know the operation
failed if null has been returned.

• Return the original String parameter without shifting. The user of the Binary class will
need to verify if the value was shifted or not.

• Allow the program to crash – the programmer who uses the Binary class should never call
the method asking to shift a negative number of times.

• Shift the binary string in the opposite direction: a shiftRightLogical by -3 is the
same as shiftLeftLogical by +3.

Whichever way you choose to implement your version of the Binary class, be prepared to explain
and defend the reasons you chose to do it that way.

Page 5 of 5

